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Abstract. A Heisenberg ferromagnet with biquadratic exchange and single-ion anisotropy 
is studied by the irreducible Green function formalism. Equations of motion for different 
Green functions are solved by means of irreducible operators and the exact matrix Dyson 
equation is derived. The low-temperature results for spin-wave damping and energy shift 
are discussed. It is found that the spin-wave modes in the quadrupolar state of the system 
disappear under certain conditions. The expressions for such modes are also found. The 
variation of Curie temperature with respect to the strength of the biquadratic exchange and 
single-ion anisotropy is also studied. 

1. Introduction 

Theoretical investigations carried out over the past few decades have clearly revealed 
our inability to perform exact calculations of the statistical mechanical properties of 
quantum spin models, like Heisenberg models. Even those methods which can provide 
the best estimates of various thermodynamic properties of some Ising models are 
not comfortably applicable to the Heisenberg models. If the Heisenberg Hamiltonian 
contains biquadratic exchange and single-ion anisotropy, the problem becomes much 
more complicated. To date, no attempts have been made to treat such problems by a 
high-temperature series expansion technique, a renormalisation group formalism and a 
Monte Carlo simulation method. It is believed that by these methods it is possible to get 
the best estimates for statistical quantities of any system. However, it is also possible, in 
principle, to achieve systematically a reasonably accurate solution of the problem by 
means of a diagrammatic perturbation formalism. But such calculations for a biquadratic 
exchange system are extremely complicated and have not been carried out successfully. 
Some low-temperature results were obtained by Westwansky and Skrobis (1977). The 
diagram technique they proposed is based on a Wick-like reduction theorem for the 
standard basis operators. This Wick-like reduction theorem uses the priority principle 
of Yang and Wang (1975) which leads to ambiguous results in several cases. This 
difficulty was faced by Chakraborty and Tucker (1987) in evaluating the higher-order 
semi-invariants while calculating the high-temperature contributions to the self-energy 
for a Heisenberg model with spin-phonon coupling. Also, it is now generally felt that 
the use of standard basis operators for developing a diagrammatic theory complicates 
the problem unnecessarily. Furthermore, Westwansky and Skrobis (1977) did not derive 
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the high-temperature results and so in this sense their work may be regarded as incom- 
plete. The extension of their work to high temperatures is extremely complicated and 
seems to be intractable. However, a Heisenberg model can be conveniently studied 
by yet another method, commonly known as the irreducible Green function (IRG) 
formalism, first introduced by Plakida (1971, 1973) and employed by other authors to 
study specific problems (Kuzmensky 1978, Marvakov et al 1985, Chakraborty 1988). 
The purpose of the present paper is to employ the IRG formalism to study a Heisenberg 
ferromagnet with biquadratic exchange and single-ion anisotropy, at all temperatures. 
We consider a system of spins (S = 1) arranged over a translationally invariant 3~ lattice 
and governed by the following Hamiltonian 

where coo = gpBH,, g being the Lande splitting factor, pug the Bohr magneton, Ha the 
external magnetic field, D the strength of the single-ion anisotropy, .Il, the bilinear 
exchange integral and & the biquadratic exchange parameter defined by the ratio of the 
biquadratic exchange to bilinear exchange. A special case of the model (D = 0) was 
studied elaborately in the past using the constant-coupling approximation (Brown 1971) 
and molecular-field approximation (MFA) (Nauciel-Bloch eta1 1972). The Green function 
equation-of-motion method with various decoupling procedures was also attempted 
(Chakraborty 1976, 1977, Munro and Girardeau 1976, Adler et a1 1976, Adler and 
Oitmaa 1979, Micnas 1976, Kumar and Sharma 1977, Stewart and Adler 1980, Tiwari and 
Srivastava 1980). The results obtained from all these calculations differ quantitatively, 
sometimes qualitatively. In addition to this, the so-called redundancy problem of Murao 
and Matsubara (1968) prevailing in these calculations render the results doubtful. 

2. Equation of motion for the Green functions and irreducible operators 

We define the two-time temperature-dependent retarded Green function ((A; B)) by 

((A; B)) = -iO(t - t’)([A(t) ,  B( t ’ ) ] )  (2) 

where A ,  B are spin operators, O(x) is a step function, t and t’ being the time variables. 
Differentiating with respect to the first time t and taking the time-Fourier transform we 
can write the equation of motion for the Green function as 

a, = ( ( [A ,  B ] ) ) / ( W  + (([A,Hl; B)) ( 3 )  

where we put h = 1. Hereafter we omit the suffix w .  

((07 ; S i ) ) ,  ((S; ; U,)), ((a; ; a,)), wherefand g are lattice sites and 
In the present problem we have four independent Green functions, ( (S f ;S ; ) ) ,  

a; = s; ss + ss s;. (4) 

Using (3) and the Fourier transforms 
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(5c) 
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(18) 

Solving the above two equations we can express the Green functions ( ( v ) ~ ;  S;) )  and 
( ( q k ;  a;)) in the following forms: 

+ [w - 0 0  - 2b(l  - ia)(Jo - J @ ) ] [ ( l  - 

E = [ (U  - oq+')(w - U ; ) ] -  1 . 

- (1 - ha)q,])) (22) 

where E is given by 

(23) 

Utilising equations (21) and (22) we can express equations (10)-(13), after some 
rearrangements, in the form of a matrix Dyson equation. This is 

G = G o  + GoPG' (24) 
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The P are the polarisation operators given by 

where 

with 

w i  determine the energy spectra of the system given by 

w ;  = WO + b[2(1 - cU)Jo - J k ]  * M ( k )  (33) 

with 

In the absence of biquadratic exchange, (33) reduces to the form: 

6.): = W O  + 2bJo - bJk * [b2Jz + D(D - 2AJk)]"2. (35) 
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3. Low-temperature properties 

Equation (23) can be expressed as the exact Dyson equation 

G = Go + GOZG 

where I: is the self-energy operator given by I: = (P)‘, c denoting the connected or 
proper part. Assuming that the approximate poles of G are at w i  -k it., E+ 0 we can 
write 

where E,(k) stand for the renormalised energy given by 

E i ( k )  = CO: + A i Z m ( k ,  cc); + ie) (37) 

(38a) 

(386) 

(39a) 

(39b) 

with m = 1, 2,  3 ,  4 and 

A: = [ 2 i ~ M ( k ) ] - ’ { b [ 0 ;  - COO - 2 b ( ( l  - #a)Jo - h a J k ) ]  + AD1} 

A: = [ 2 ~ M ( k ) ] - l ( b [ ~ 0 ;  - COO - 2b((l - ha)(Jo  - J k ) ) ]  + AD2) 

A: = [ 2 7 ~ M ( k ) ] - l { b D ,  + A[o;  - COO - 2b( ( l  - 2a)Jo - i a J k ) ] } .  

A ’ -  3 - [2nM(k) ] - l {bD2  + A[oi - WO - 2b(l  - ia)(Jo - J k ) ] }  

The spin-wave energy shift and spin-wave damping rk are given by 

A o ; ( m )  - ir;(m) = A;ZC,(k, CO; + ie). (40) 

Exact calculation of the energy shift, spin-wave damping and other physical 
properties of the model is extremely difficult, perhaps impossible at this stage. 
However, the ground-state properties can be estimated exactly and some low-tem- 
perature results can be calculated comfortably. We shall confine our attention to 
finding out the effects of biquadratic exchange on the energy shift and spin-wave 
damping. First, we discuss some interesting features of the dispersion relation. 

At low temperatures, when A = b, one can write the dispersion relation 

0; = 0 0  + b[2(1 - a)Jo - J k ]  f ( 0 2  + SaJo(2 + b)(D + abJo) 

- 2bJk[D + aJo(l + b)  + Qa2Jo(l - b)]  + b2J2}”2. 

CO; = 0 0  + b(W0 - J k )  5 (D - b J k ) .  

(41) 

(42) 

For a = 0, the term within the square root becomes a perfect square and we get 

w ;  is k-independent and hence we may ignore this excitation. But if a # 0 the term 
within the square root does not become a perfect square and both the modes are k- 
dependent. However, at sufficiently low temperatures such that A = b = 1, one will 
find 
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W ;  is again k-independent and W :  is the same as that in the absence of biquadratic 
exchange. In such a case 

GT = G2 = G! = G i  = Go(k)  (~/JT)/[w - W O  + D - ~ ( J o  - J k ) ]  

W L  = W O  - D + Wo(1 - 2a). 

(45) 

(46) 

which is a-independent. At T = 0, the exact energy spectra are 

W ;  = W O  + D 

Equation (45) shows that the resonance frequency is independent of biquadratic 
exchange. The expressions for energy shift and spin-wave damping can easily be found 
to be 

r: = (4n2/N) 2 ( J k '  - J k + k ' ) * ( S i S i ' ) l j ( J k - k '  - J k ) .  (48) 
k' 

r,+, which is related to resonance linewidth, is thus zero. 
It was observed by Westwansky and Skrobis (1977) that for a biquadratic coupling 

system two different low-temperature states should be distinguished: one is the 
ferromagnetic state ( b  = il = 1) and the other is the quadrupolar state (b  = 0, A = -2). 
Consequently, (43) and (44) refer to the spin waves in the ferromagnetic state. For 
the quadrupolar state we have 

W ; / J o  = [a' - i ? C U ( J k / J o ) ] [ & '  + 2a + 4(1 - $ C V ) ( J k / J o ) ]  (49) 
where the parameter a' stands for D/JO. In the absence of single-ion anisotropy (a' = 
0) the spin-wave modes in the quadrupolar state vanish for k = 0 and thus the 
Goldstone theorem is satisfied. Furthermore, it is interesting to note that the spin- 
wave excitations also disappear even for k # 0 if the following condition is satisfied: 

a' = = 2a[1 - ( ] k / J o ) ] .  (50) 
This condition is exactly identical with the condition obtained from equation (33) of 
the paper of Westwansky and Skrobis (1977). Equation (49) also shows that the spin- 
wave modes in the quadrupolar state are not possible for a' < a:. Since in all real 
systems the biquadratic exchange is, in general, believed to be much smaller than the 
single-ion anisotropy, one may expect that the above kinds of modes may be easily 
detected. 

4. Results for Curie temperature 

In this section we shall calculate some approximate results for Curie temperature. The 
use of the spectral theorem yields the following approximate relations for a weakly 
interacting system: 

b - A = 2xN-l (A:n: - A ; n ; )  (52) 
k 

with m = 1,4 ,  r = 2 , 3  and n,' = [exp(PE:) - 11-l. The above equations contain four 
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equivalent sets of identities. One can calculate the physical properties of the model 
from just one of these four sets. We choose here the set for m = 1, r = 2. For this we 
need to calculate lkry(@) from 

with P = (kBT)-' ,  kB being the Boltzmann constant. Using a decoupling of the form 

(Ay- q ,  S L'Si' ( t ) s  i- k' ( t ) )  .-- (Ay - q' s ( t ) ) (S i '  3:- k' ( t ) )  (54) 
and approximating the right-hand side as 

( A k '  Si')(S,+ k's:- k '  ( t ) ) a k " , k '  + q' 

and replacing G by Go we can calculate Ik'y(W), which is then used to calculate the 
self-energy. Finally, taking the limit b + 0, and using A/b = 0, we get for w o  = 0, the 
following equations determining the Curie temperature: 

where 

Kc = P C J  

X =  [2P2W(1 - a ) ] / ( v d Q )  

Pc = (kB G - '  
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Figure 1. The variation of K,’ with respect to a 
for several values of a’. 

Figure 2. The variation of Kc’ against negative 
(Y for several values of a‘. 

Y = 4P{1 - a + [L(2MW - V ) / ( ~ L ~ ’ Q ) ] }  

Z =  - vFP - (4 + fQ)[(8~~)/(3c~’)](l + v P )  

with 

and 

P = 1 - ( 2 / v )  Q 1 - ( 3 / ~ )  I/ = 2 + exp( -PcD) 

M = 1 + (2Qla’)  + (1 + 4Q)[(8a)/(3af)] 

V =  4Q2(1 - 

W = 4Q2(1 - fa)’ + $(l - Q)(l - 2a)*R 

+ f(l - Q)(l - 2a)’ 

R = 1 + [(8a)/(3a’)] + (4Q/a’)(l - $a). 

Equation (61) can easily be computed. The variation of Curie temperature Tc 
against a for several values of a’ has been estimated for a simple cubic lattice ( z  = 6) 
and the results are summarised in figure 1. The results obtained in the present 
treatment are found to agree, in the first place, with those of the earlier Green function 
calculations, at least qualitatively. It is seen that the Curie temperature Tc decreases 
as the biquadratic coupling strength increases. But the results differ very much from 
a quantitative point of view. It may be noted that in the present calculation the Curie 
temperature is highly sensitive to very small values of a. As a is increased from zero 
to a very small value, Tc drops appreciably, but as a increases more, Tc gradually 
becomes more insensitive. Furthermore, it has also been found that there exists a 
critical value of a’ beyond which the above equation for Tc has no solution. This 
critical value of a’ depends on the strength of the single-ion anisotropy. For a’ > 5 ,  
there is no solution for Tc except at a = 0. Since our approximation is based on large 
positive a’ this result may be believed to be true. The solution of T,  is also obtained 
for negative a as shown in figure 2. 
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5. Conclusions 

Calculations presented here on the basis of the irreducible Green function formalism 
have been found to yield results which are sometimes drastically different from the 
earlier conventional Green function theories. Such differences are caused primarily 
by the arbitrariness in so-called decoupling approximations. However, there are some 
limitations in carrying out the calculation of physical properties within the framework 
of irreducible Green function theory. For example, in the present paper it has not 
been possible to have systematic quantitative estimates for the thermal variation of 
magnetisation and quadrupolar ordering parameter. Although a rough estimate is 
possible on the basis of approximations of small b and A and for large D, no consistent 
series can be obtained like one available, in principle, from a diagrammatic theory. 
This would become possible if one could express the self-energy systematically, say, 
in powers of 1/z or in powers of other physically accessible parameters. At present, 
such method of calculation is not available. 
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